“I think this is something of a breakthrough. It’s another way of creating electronics that is simpler and doesn’t require any expensive equipment,” says Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University.
LOE’s researchers are working with conductive plastics, also known as conjugated polymers, to develop new technologies in areas such as medicine and renewable energy. Conjugated polymers combine the electrical properties of metals and semiconductors with the flexibility of plastics.
Thor Balkhed
Special monomers
The Campus Norrköping researchers, together with colleagues in Lund and New Jersey, have now succeeded in creating a method where polymerisation can happen using visible light only. This is possible due to specially designed water-soluble monomers developed by the researchers. Thus, no toxic chemicals, harmful UV light or subsequent processes are needed to create the electrodes.
“It’s possible to create electrodes on different surfaces such as glass, textiles and even skin. This opens up a much wider range of applications,” says Xenofon Strakosas.
Thor Balkhed
“The electrical properties of the material are at the very forefront. As the material can transport both electrons and ions, it can communicate with the body in a natural way, and its gentle chemistry ensures that tissue tolerates it – a combination that is crucial for medical applications,” says Tobias Abrahamsson, researcher at LOE and lead author of the article published in the scientific journal Angewandte Chemie.
New type of electronics
Thor Balkhed
“As the method works on many different surfaces, you can also imagine sensors built into garments. In addition, the method could be used for large-scale manufacture of organic electronics circuits, without dangerous solvents,” says Tobias Abrahamsson.
The research was funded mainly by the European Research Council, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the Stig Wadström Foundation, the Åke Wiberg Foundation and via the Swedish Government’s Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.
Article: ,
Tobias Abrahamsson, Fredrik Ek, Rémy Cornuéjols, Donghak Byun, Marios Savvakis, Cecilia Bruschi, Ihor Sahalianov, Eva Miglbauer, Chiara Musumeci, Mary J. Donahue, Ioannis Petsagkourakis, Maciej Gryszel, Martin Hjort, Jennifer Y. Gerasimov, Glib Baryshnikov, Renee Kroon, Daniel T. Simon, Magnus Berggren, Ilke Uguz, Roger Olsson, Xenofon Strakosas, Angewandte Chemie, published online 10 November 2025. DOI: 10.1002/ange.202517897