福利姬

11 February 2019

Theoretical physicists at 福利姬 have developed a computational method to calculate the transition from one phase to another in dynamically disordered solid materials. This is a class of materials that can be used in many eco-friendly applications.

Johan Klarbring,  Photographer: THOR BALKHED
Solid materials are in reality not quite as solid as they appear. Normally, each atom actually vibrates around a certain position in the material. Most theoretical models that aim to describe solid materials are based on the assumption that the atoms retain their positions and do not move very far from them.

“This is not the case for some materials, such as materials with very high ionic conductivity and those where the building blocks are not only atoms but also molecules. Several of the perovskites that are promising materials for solar cells are of this kind”, Johan Klarbring, doctoral student in theoretical physics at Linköping University, tells us.

Perovskites are defined by their crystal structures and come in different forms. Their constituents can be both atoms and molecules. The atoms in the molecules vibrate, but the complete molecule can also rotate, which means that the atoms move significantly more than is often assumed in the calculations.

Dynamically disordered solid materials

Materials that show this atypical behaviour are known as “dynamically disordered solid materials”. Dynamically disordered solid materials show immense potential in environmentally sensitive applications. Materials that are good ionic conductors are, for example, promising in the development of solid electrolytes for batteries and fuel cells, and for thermoelectric applications.

However, the properties of materials have been tricky to calculate theoretically and researchers have often been forced to use time-consuming experiments.

Jonas Klarbring has developed a computational method that describes accurately what happens when these types of material are heated and undergo phase transitions. Johan Klarbring and his supervisor, Professor Sergei Simak, have published the results in the scientific journal Physical Review Letters.

Bismuth oxide

They have studied bismuth oxide, Bi2O3, a material known to be a very good ionic conductor. This oxide, where current is conducted by oxide ions, is the best oxide ion conductor of all known solid materials. Experiments have shown that it has a low conductivity at low temperatures, but when heated it undergoes a phase transition into a dynamically disordered phase with high ionic conductivity.

“The article in Physical Review Letters describes how we have been able for the first time to theoretically describe the phase transition in bismuth oxide, and calculate the temperature at which it occurs. This provides an important theoretical basis for the development of, for example, electrolytes in fuel cells, where it is important to know exactly when the phase transition takes place”, says Johan Klarbring.

“I start from an ordered phase, which is well-described by conventional methods. I then use a technique known as ‘thermodynamic integration’, which I have adapted to deal with the disordered motion. The ordered phase is coupled to the disordered one, with the aid of a series of quantum mechanical calculations, carried out at the National Supercomputer Centre at LiU.”

Perovskites next

The theoretical calculations are in full agreement with how the material behaves in laboratory experiments.

The researchers now plan to test the method on other interesting materials, such as perovskites, and on materials with high lithium ionic conductivity. The latter are of interest for the development of high-performance batteries.

“Once we have a deep theoretical understanding of the materials, it improves the possibilities to optimise them for specific applications”, concludes Johan Klarbring.

The research is financed by the Swedish Research Council and the Swedish Government Strategic Research Area initiative in Material Science on Functional Materials at Linköping University.

The article: , Johan Klarbring, Sergei I. Simak, Linköping University, Physical Review Letters 121, 2018. DOI 10.1103/PhysRevLett.121.225702

Translated by George Farrants

Contact

AFM news 

Reseracher in lab.

New master鈥檚 programmes in world-leading materials science

福利姬 is one of the world鈥檚 leading universities in materials science. The autumn of 2026 will see the launch of two new master鈥檚 programmes in this field. The students can look forward to an excellent labour market.

Researcher with blue gloves by microscope.

Plastic nerve cells become more advanced 鈥 and simpler

An artificial neuron made of conductive plastics that can perform advanced functions similar to those of biological nerve cells has been demonstrated by researchers at LiU.

A man in a lab applies water to the surface of a yellow-green material.

More effective production of 鈥済reen鈥 hydrogen with new combined material

Hydrogen produced from water is a promising renewable energy source 鈥 especially if the hydrogen is produced using sunlight. Now LiU researchers show that a combination of new materials improves the efficiency of the chemical reaction several times.

Latest news from LiU

Jendrik Seipp.

Research on next-generation AI planning receives SEK 15 million

LiU researcher Jendrik Seipp has been awarded SEK 15 million to develop an AI planning system that uses multi-core processors for parallel computation. This could lead to more efficient logistics and large-scale energy optimisation, among much else.

Woman by a tree looking into the camera.

The paper industry can become more energy-efficient with a new measurement method

The pulp and paper industry consumes large amounts of energy. But despite stricter EU requirements for efficiency improvements, there has been no way to compare energy consumption between different companies. Now there may be a solution.

Reseracher in lab.

New master鈥檚 programmes in world-leading materials science

福利姬 is one of the world鈥檚 leading universities in materials science. The autumn of 2026 will see the launch of two new master鈥檚 programmes in this field. The students can look forward to an excellent labour market.