福利姬

15 September 2020

Through computer simulations researchers at 福利姬 have discovered a new way of building efficient molecular motors where weight differences between different isotopes of a hydrogen atom play a decisive role.

A chiral molecule has the particular characteristic of being different from its mirror image in the same way as a left hand is different from a right hand. Essentially, different forms of a chiral molecule have identical properties apart from how they react with other chiral molecules. This is of great importance in organic chemistry, especially in the development of medical drugs that interact with the human body’s biomolecules, which are almost always chiral.

In addition, the chirality of organic molecules can be used in molecular motors to convert light energy into rotary motion. In a recent study, published in , researchers at Linköping University have discovered that one can build efficient molecular motors using the chirality that comes from hydrogen atoms that are present in different isotopes.

- The question we asked ourselves was whether we can use isotopic chirality in the same way we use chemical chirality to design organic molecular motors, says Bo Durbeej, who is the head of the theoretical chemistry unit and professor in computational physics at the Department of Physics, Chemistry and Biology.

The difference between the two types of chirality is that a chemically chiral organic molecule typically requires that a specific carbon atom in the molecule is attached to two different chemical groups. But for a molecule with isotopic chirality, it is sufficient for the carbon atom to be attached to two different isotopes of a hydrogen atom.

- Isotopic chirality is a known concept since the 1930´s, but was long viewed as a curiosity and not very useful. Now we have shown that the concept can actually be used to design molecular motors that are as efficient as chemically chiral motors in transforming light energy into rotary motion, says Bo Durbeej.

Through advanced computer simulations at the National Supercomputer Centre at Linköping University, NSC, Bo Durbeej and his co-workers also show that isotopic chirality can even be advantageous, for one important reason.

- If you switch a chemical group for a hydrogen atom it lowers the weight of the molecule, which then leads to a faster rotation. Basically, there is more power in the motor, says Bo Durbeej.

Molecular motors is a field in fast expansion, basically for its great potential. The 2016 Nobel prize in chemistry was awarded to the pioneers of the field.
- Molecular motors are predicted to make way for new applications in both nanotechnology and medicine, for example in transportation and delivery of medical drugs. It is also really fun to have shown that an old concept like isotopic chirality can contribute to the field’s development, says Bo Durbeej.

Latest news from LiU

Jendrik Seipp.

Research on next-generation AI planning receives SEK 15 million

LiU researcher Jendrik Seipp has been awarded SEK 15 million to develop an AI planning system that uses multi-core processors for parallel computation. This could lead to more efficient logistics and large-scale energy optimisation, among much else.

Woman by a tree looking into the camera.

The paper industry can become more energy-efficient with a new measurement method

The pulp and paper industry consumes large amounts of energy. But despite stricter EU requirements for efficiency improvements, there has been no way to compare energy consumption between different companies. Now there may be a solution.

Reseracher in lab.

New master鈥檚 programmes in world-leading materials science

福利姬 is one of the world鈥檚 leading universities in materials science. The autumn of 2026 will see the launch of two new master鈥檚 programmes in this field. The students can look forward to an excellent labour market.