žŁÀûŒ§

Fotografi av Filip Ekström Kelvinius

Filip Ekström Kelvinius

Doktorand

Min forskning handlar om maskininlärning där jag främst fokuserat på djupinlärningsmetoder för graf-baserad data, med sökandet efter nya material som motiverande tillämpning.

Presentation

Jag Àr doktorand vid avdelningen Statistik och maskininlÀrning. Min forskning Àr fokuserad pÄ utveckling av maskininlÀrningsmetoder, sÀrskilt djupinlÀrning, för graf-baserad data. Forskningen Àr tvÀrvetenskaplig, dÀr jag anvÀnt sökandet efter nya material som tÀnkt tillÀmpning. Det har inneburit att jobba med diskriminativa modeller som graf-neuronnÀt för att förutse egenskaper hos material, men Àven utvecklandet av generativa modeller, sÀrskilt sÄ kallade diffusionsmodeller.

För mer information om mig, se min (pÄ engelska). För en komplett lista över publikationer, se min .

Publikationer

2025

Filip Ekström Kelvinius, Oskar Andersson, Abhijith S. Parackal, Dong Qian, Rickard Armiento, Fredrik Lindsten (2025) Proceedings of the 42nd International Conference on Machine Learning, s. 15130-15147 (Konferensbidrag)
Filip Ekström Kelvinius, Zheng Zhao, Fredrik Lindsten (2025) Proceedings of the 42nd International Conference on Machine Learning, s. 15148-15181 (Konferensbidrag)
Filip Ekström Kelvinius (2025)

2024

Filip Ekström Kelvinius, Fredrik Lindsten (2024) Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, s. 3403-3411 (Konferensbidrag)

2023

Filip Ekström Kelvinius, Dimitar Georgiev, Artur Petrov Toshev, Johannes Gasteiger (2023) Advances in Neural Information Processing Systems 36 (NeurIPS 2023) (Konferensbidrag)

Forskning

Om avdelningen

Kollegor vid STIMA

Om institutionen