ø£Ąū¼§

13 December 2018

How do you measure protein motion? Can you see protein molecules moving at high resolution? Antonios Pantazis is the most recently recruited research fellow at the Wallenberg Centre for Molecular Medicine (WCMM), and he has developed a method that he believes will advance research into ion channels.

Antonios Pantazis is a new WCMM Fellow since September 2018. He has just begun to build and recruit for his lab. His researches concentrate on ion channels and how we can study them in high resolution using a unique method he has been involved with developing. Photo credit: Daniel WindreIon channels are macromolecules that are constructed of protein complexes. They span the cell membrane and allow specific ions to enter or leave the cell when they receive electrical signals. This controls the excitability of the cell – its ability to generate and react to electrical signals. The ions move in response to environmental stimuli or signals, and they also move when carrying out their biological function. This may be, for example, controlling the heartbeat, controlling other muscular functions, or the transfer of signals between nerves.


ā€œScientists in my field are sometimes criticised for reducing a person to a collection of molecules, but I don’t agree. The molecules in themselves have a beautiful design that can demonstrate many different properties – this is not a reduction, it just makes the whole thing more fascinatingā€, says Antonios Pantazis.

Biophysics, and ion channels in particular, is Antonios’ field of study, and he is one of the most recent research fellows recruited by WCMM. Right now, he is starting to build up his laboratory at Linkƶping University and the centre.

From UCLA to Linkƶping

Antonios has spent the past ten years at the University of California (UCLA) as postdoc and assitant researcher, and has moved to Ɩstergƶtland in Sweden for family reasons and for the opportunity to develop as scientist.

ā€œMy wife is Swedish. We met in California, and started to think about the next steps in our careers and where we wanted to live. It was important for me personally that I could develop independence as a researcher.ā€

In 2017 he met Fredrik Elinder, pro-dean for research at the Faculty of Medicine and Health Sciences, who also works with ion channels, at the Biophysical Society Meeting in New Orleans. Fredrik Elinder told Antonios about the fellowship programme at WCMM in Linkƶping, and it sounded extremely interesting. And thus it is that since the start of September 2018 he has been here at Linkƶping University to start work and continue research into ion channels, trying to understand how their complex molecular architecture relates to their function and regulation.

ā€œThe first thing I must say is that the research environment here is amazing. The research grant from WCMM is extremely generous and competitive. At the same time, I’m working in the same corridor as Fredrik Elinder and other researchers such as Sara Liin. And of course, Fredrik is an established name in biophysics, and in ion channel research. Sara, like me, is just starting her career, building up her lab, and getting under way in the field. So it’s hugely inspiring to be able to discuss thoughts and ideas with people in the same fieldā€, says Antonios.

Publication in Nature Communications

From his work at UCLA Antonios brings, among other things, an article that describes a new study, published in the scientific journal Nature Communications at the start of November. This article describes a new method to measure and visualise at high resolution how protein complexes move.

ā€œProteins are macromolecules with very complex structures. What is exciting is that the protein structure is seldom static, but is nearly always moving – in response to environmental stimuli or signals. The complexes also move when they carry out their biological functions.ā€

The best methods available for studying protein structure have until now only been able to offer static images.

ā€œMy colleagues and I have developed a new optical method that we call ā€œDEPETā€ (Distance-Encoding Photoinduced Electron Transfer). This makes it possible to measure distances and angles in a protein with a resolution better than a nanometre, and we can see how the protein changes when it undergoes conformational changes after receiving an electrical signal. This is a critical function that we haven’t previously been able to see.
I’m planning to continue using DEPET here in my laboratory at LiU, together with other advanced methods, to look at motion in a type of ion channel known as ā€œBK channelsā€, among other things. It’s particularly interesting to look at differences between different tissuesā€, explains Antonios.

Recruiting

Antonios is planning to recruit both postdocs and doctoral students to the group.
ā€œI have funding for four researchers, and I’m delighted to have the opportunity to lead a group of young, motivated, researchers who want to learn more and discover how our body functions at a molecular level.

Read the publication

Antonios Pantazis, Karin Westerberg, Thorsten Althoff, Jeff Abramson, Riccardo Olcese (2018)

Nature Communications , Vol.9

Contact

Latest news from LiU

EU-flagga

Roadmap to strengthen LiU:s role in Europe

LiU is increasing international presence by launching the Roadmap to Europe initiative. The aim is to deepen the university’s collaboration within Europe so as to strengthen education, research and collaboration with various stakeholders.

PortrƤtt av Fredrik Heintz som sitter i en trappa

National initiative to protect AI systems from cyberattacks

LiU will host a new national centre aimed at developing resilient AI systems. The funding of SEK 60 million comes from the Swedish Foundation for Strategic Research and its director will be LiU Professor Fredrik Heintz.

A snowy path with a building in the background.

SEK 40 million from the Swedish Research Council for clinical therapy research

A reduction in infection risks during hip replacement surgery and improved care for people with opioid dependence can lead to safer surgery and more effective addiction therapy.