25 March 2019

Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity – at the same time! The measurements are completely independent of each other. The sensor may be highly significant in fields such as robotics, healthcare and security.

Closeup on a man who is holding a sensor in front of one of his eyes. He is wearing a blue rubber glove.
Shaobo Han with the sensor that can measure pressure, temperature and humidity - at the same time. Photo: Thor Balkhed Photographer: Thor Balkhed
The ability to measure pressure, temperature and humidity is important in many applications, such as monitoring patients at home, robotics, electronic skin, functional textiles, surveillance and security, to name just a few. Research until now has targeted integrating the different sensors into the same circuit, and this has presented several technical challenges, not least concerning the interface to the user.

Scientists in the Laboratory of Organic Electronics at Linköping University have now, under the leadership of Professor Xavier Crispin, successfully combined all three measurements into a single sensor.

Aerogel

This has been made possible by the development of an elastic aerogel of polymers that conducts both ions and electrons, and subsequent exploitation of the thermoelectric effect. Photo credit Thor BalkhedA thermoelectric material is one in which electrons move from the cold side of the material towards the warm side, and in this way create a voltage difference.

When nanofibres of cellulose are mixed with the conducting polymer PEDOT:PSS in water and the mixture is freeze-dried under vacuum, the resulting material has the same structure as a washing sponge, an aerogel. Adding a substance known as Photo credit Thor Balkhedpolysilane causes the sponge to become elastic. Applying an electrical potential across the material gives a linear current increase, typical of any resistor. But when the material is subject to a pressure, its resistance falls and electrons flow more readily through it.

Since the material is thermoelectric, it is also possible to measure temperature changes: the larger the temperature difference between the warm and cold sides, the higher the voltage developed. The humidity affects how rapidly the ions move from the warm side to the cold one. If the humidity is zero, no ions are transported.

”What is new is that we can distinguish between the thermoelectric response of the electrons (giving the temperature gradient) and that of the ions (giving the humidity level) by following the electrical signal versus time. That is because the two responses occur at different speeds”, says Xavier Crispin, professor in the Laboratory of Organic Electronics and principal author of the article published in Advanced Science.

“This means that we can measure three parameters with one material, without the different measurements being coupled”, he says.

A lot of possible applications

Shaobo Han, doctoral student, and Senior Lecturer Simone Fabiano at the Laboratory of Organic Electronics, have also found a way to separate the three signals from each other, such that each can be simply read individually.

“Our unique sensor also prepares the way for the internet of things, and brings lower complexity and lower production costs. This is an advantage not least in the security industry. A further possible application is placing sensors into packages with sensitive goods”, says Simone Fabiano.

Financiers of the research include the Knut and Alice Wallenberg Foundation (the Tail of the Sun project), the Wallenberg Wood Science Center, the Vinnova Digital Cellulose Center, and the government’s strategic investment into advanced functional materials at Linköping University, AFM.

The article: A multiparameter Pressure-Temperature-Humidity Sensor based on Mixed Ionic-Electronic Cellulose Aerogels, Shaobo Han, Naveed Ul Hassan Alvi, Lars Granlöf, Hjalmar Granberg, Magnus Berggren, Simone Fabiano and Xavier Crispin, Advanced Science 2019. DOI 10.1002/advs.201802128

Translated by George Farrants

Contact

More news from LOE

Reseracher in lab.

New master’s programmes in world-leading materials science

is one of the world’s leading universities in materials science. The autumn of 2026 will see the launch of two new master’s programmes in this field. The students can look forward to an excellent labour market.

Researcher with blue gloves by microscope.

Plastic nerve cells become more advanced – and simpler

An artificial neuron made of conductive plastics that can perform advanced functions similar to those of biological nerve cells has been demonstrated by researchers at LiU.

Centres of Excellence strengthen LiU’s research

The investment in four prominent research environments, Centres of Excellence, will ensure long-term development, improved quality and deeper collaboration for LiU.

Research

Latest news from LiU

Jendrik Seipp.

Research on next-generation AI planning receives SEK 15 million

LiU researcher Jendrik Seipp has been awarded SEK 15 million to develop an AI planning system that uses multi-core processors for parallel computation. This could lead to more efficient logistics and large-scale energy optimisation, among much else.

Woman by a tree looking into the camera.

The paper industry can become more energy-efficient with a new measurement method

The pulp and paper industry consumes large amounts of energy. But despite stricter EU requirements for efficiency improvements, there has been no way to compare energy consumption between different companies. Now there may be a solution.

Reseracher in lab.

New master’s programmes in world-leading materials science

is one of the world’s leading universities in materials science. The autumn of 2026 will see the launch of two new master’s programmes in this field. The students can look forward to an excellent labour market.