ø£Ąū¼§

13 December 2018

In a recently concluded project in Horizon 2020, researchers and developers from three European countries have created new technology for a disaster-response robot. The robot is intended for use in dangerous environments, such as after an accident in a nuclear power plant.

The Centauro robot
The Centauro robot Photographer: Centauro project
The robot progresses slowly forwards on its four wheeled legs. It’s certainly not in a hurry, but it manages to climb stairs and scramble over obstacles, albeit with a certain degree of wobble. The precision of the robot hands is more impressive: the Centauro robot can grip a freely chosen tool and use it completely autonomously, and it can turn a tap, press a door handle down, and open a door without problems. The robot otherwise is controlled remotely with the aid of an exoskeleton where the operator sits inside the control system and transfers motion to the robot hands, feet and body.

Avdelningen fƶr datorseende, ISY, professor Michael FelsbergMichael Felsberg Photo credit Gƶran Billesonā€œOur German colleague who has coordinated the project claims that this is the most advanced system of this type in the world. I’m sure he’s right – not many people have worked on this type of robotā€, says Michael Felsberg, professor of computer vision, and, together with Klas Nordberg, head of the LiU contribution to the Centauro project.

Challenging environment

The springboard for the project was the accident in Fukushima, where emergency personnel desperately tried to shut down the damaged reactors with the aid of robots. It didn’t work particularly well. One of the research projects funded by the EU Horizon 2020 initiative, therefore, was to solve the technical challenges and find a way to control a robot that could perform several tasks in a challenging environment where walls and ceilings may have collapsed. The project started in April 2015.

Researchers from three European countries: Germany, Italy and Sweden, have been involved in the project. It was coordinated by the University of Bonn, and the German nuclear safety company Kerntechnische Hilfsdienst GmbH also participated, in the role of end user.
The Swedish participants were researchers from the Royal Institute of Technology and Computer Vision Laboratory, CVL, at LiU.

ā€œAt LiU, we have principally worked with perception for navigation and manipulationā€, says Michael Felsberg.

Mapping in different scales

The robot can, for example, construct a map of the surroundings, not only at an overall scale, but also at several different scales down to very small features such as small obstacles on the floor. With respect to manipulation, the project has examined how the hand is to be operated such that it can grip, twist, push and pull. One part of the project has also concerned classifying what the robot sees: walls, ceilings, electrical cabinets, furniture and many other features.

ā€œWe have also developed a new algorithm for sensors, such as the Microsoft Kinect, that are sensitive to depthā€, says Michael Felsberg.

There is much that he is satisfied with, but not everything.

ā€œWe’ve achieved a lot, but we haven’t managed to solve it completely. For example, the robot can’t climb up steep ramps: the friction at the front legs is too low for this. It can climb across a ditch, but it can’t do it quickly, which is something that a dog manages with never-failing precisionā€, he says.

Stronger than us

The robot is not adapted for radioactive environments either, but otherwise works well. The Centauro robot weighs only 75 kilos, but its arms are significantly stronger than a Centauro en robot utvecklad fƶr farliga miljƶerThe Centauro robot can grip a freely chosen tool and use it person’s arms, and it has greater stamina. It can hold ten kilos in each hand with outstretched arms indefinitely, and it can keep its hand at exactly the same point above its head while the rest of its body moves.

ā€œBut as in all EU projects, traveling takes up a lot of time, and a lot of reports have to be submitted. The projects are also strictly controlled, which makes it difficult to reach true scientific breakthroughsā€, says Michael Felsberg.

The Centauro project has, however, despite this resulted in around ten scientific articles for the researchers at the Computer Vision Laboratory.

Translation George Farrants

(external link)


Contact

CVL news

Presentation by Lotten Juhlin.

ISY Day 2025 – sustainability in academia, industry, and society

This years theme for the ISY Day was ā€œSustainability in Academia, Industry, and Societyā€, featuring lectures, discussions, and examples of how sustainability can be integrated into research, education, and industrial development.

Tomas Landelius and Carolina Natel de Moura.

The focus period resulted in new collaborations for the climate

In the fall of 2024, researchers from around the world once again gathered at ø£Ąū¼§ for ELLIIT's five-week focus period. This time, the goal was to initiate and deepen collaborations in climate research using machine learning.

Participants are listening to a lecture.

Symposium aiming to improve the climate

In the fall of 2024, ø£Ąū¼§ once again hosted ELLIIT's five-week-long focus period. This guest researcher program aimed for greater breadth in interdisciplinarity this year, with the theme of machine learning for climate science.

Latest news from LiU

Jendrik Seipp.

Research on next-generation AI planning receives SEK 15 million

LiU researcher Jendrik Seipp has been awarded SEK 15 million to develop an AI planning system that uses multi-core processors for parallel computation. This could lead to more efficient logistics and large-scale energy optimisation, among much else.

Woman by a tree looking into the camera.

The paper industry can become more energy-efficient with a new measurement method

The pulp and paper industry consumes large amounts of energy. But despite stricter EU requirements for efficiency improvements, there has been no way to compare energy consumption between different companies. Now there may be a solution.

Reseracher in lab.

New master’s programmes in world-leading materials science

ø£Ąū¼§ is one of the world’s leading universities in materials science. The autumn of 2026 will see the launch of two new master’s programmes in this field. The students can look forward to an excellent labour market.